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Abstract

Aerosol light scattering (Bsp) was estimated from particle size and chemical measurements during the winter intensive

period (15 December 2000–3 February 2001) at the Fresno Supersite as part of the California Regional PM10/PM2.5 Air

Quality Study (CRPAQS). Bsp was underestimated by 41–46% from scanning mobility particle sizer (SMPS) and optical

particle counter (OPC) particle size distributions depending on assumptions about refractive index and hygroscopic

growth. Bsp was underestimated by 35% using the Interagency Monitoring of PROtected Visual Environments

(IMPROVE) light extinction equation and by 25% using chemical size distributions measured with micro orifice uniform

deposit impactor (MOUDI) cascade impactors and a Desert Research Institute (DRI) PM2.5 sequential filter sampler

(SFS). Underestimation of Bsp in Fresno was related to differences in the temperature and relative humidity (RH) at which

various measurements were made. Evaporation of ammonium nitrate in the heated environment in which the SMPS and

OPC instruments were located caused a reduction in particle size and number concentration. The MOUDI was operated

outdoors at ambient temperature and RH, while a smart-heater equipped Radiance nephelometer was operated at RH

o72%. Comparing estimated and measured Bsp required adjusting the SMPS, OPC, and MOUDI size distributions to the

nephelometer RH. A systematic low-bias in estimated scattering suggests that organic aerosols may have contributed to

hygroscopic growth. Consistent measurement strategies are needed to properly estimate aerosol light extinction under

conditions such as those found in Fresno during winter.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Pollution-derived and natural aerosols degrade
visibility in urban and remote locations and play a
role in climate forcing (Charlson et al., 1992). Under-
standing the causes and magnitudes of current and
future aerosol effects on visibility and climate requires a
proper understanding of their optical and hygroscopic
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properties. Aerosol extinction has been inferred from
satellite and ground-based remote sensing measure-
ments (Durkee et al., 2000; Vitale et al., 2000; Hauser
et al., 2005). In-situ measurements of particle size
distributions and size-resolved chemistry have been
used to estimate aerosol light extinction (scattering and
absorption) at urban, rural, and marine locations
(Hayasaka et al., 1992; Zhang et al., 1994; Lowenthal
et al., 1995; Malm and Pitchford, 1997; Moosmüller
et al., 1998; McInnes et al., 1998; Quinn et al., 1998,
2001; Richards et al., 1999, 2001; Hand et al., 2002;
Hegg et al., 2002; Malm et al., 2003, 2005).
.
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Ammonium nitrate (NH4NO3) and organic
matter dominate particle mass concentrations in
California’s San Joaquin Valley (SJV) during winter
(Chow et al., 1993a, 1996, 2006). NH4NO3 is a
secondary aerosol product of gaseous emissions
from motor vehicle exhaust (nitrogen oxides [NOx])
and agricultural activities (ammonia [NH3]); it is a
volatile compound that exists in the atmosphere in
equilibrium with gaseous NH3 and nitric acid
(HNO3; Stelson and Seinfeld, 1982; Hering and
Cass, 1999). Low temperature and high relative
humidity (RH) during winter favor the particle
phase.

This study estimates particle light scattering (Bsp)
using various methods and measurements at the
Fresno Supersite (Watson et al., 2000) during the
California Regional PM10/PM2.5 Air Quality Study
(CRPAQS; Watson et al., 1998) winter intensive
operating periods (IOPs) in late 2000 (15–18
December and 26–28 December) and early 2001
(4–7 January and 31 January–3 February). The
effect of variations in theoretical assumptions and
measurements on accurate estimation of Bsp is
discussed.

2. Methods

The Fresno Supersite is located at 3425 First
Street, approximately 5 km from the downtown
district near the geographical center of the SJV. Air
quality monitors are operated on the roof of a two-
story building. Some instruments are located in the
second-floor laboratory and draw air through
rooftop inlets. Sampler inlets are located �10m
above ground level. The following analysis uses
measurements of the particle size distribution, size-
resolved and PM2.5 (particles with aerodynamic
diameters o2.5 mm) chemistry, and Bsp during the
CRPAQS winter IOPs.

2.1. Particle size distributions

Particle size distributions were measured with
(1) a scanning mobility particle sizer (SMPS; TSI
Model 3936L10, TSI, Inc., St. Paul, MN) equipped
with a ‘‘long’’ differential mobility analyzer (DMA;
TSI Model 3080, TSI, Inc., St. Paul, MN) and a
condensation nucleus counter (CNC; TSI Model
3010, TSI, Inc., St. Paul, MN), and (2) an optical
particle counter (OPC; Lasair 1003, Particle Mea-
suring Systems, Boulder, CO), located in the
climate-controlled laboratory. The SMPS measures
particle number concentrations (N) for particle
diameters from 9 to 392 nm in 52 channels based
on their electrical mobility. The OPC sizes particle
diameters from 100 to 2500 nm in seven channels
according to the amount of light they scatter. The
SMPS and OPC approaches assume that the
particles are spherical. The SMPS size distributions
were corrected for multiple charging and for the
decrease in small particle counting efficiency in the
CNC. The OPC was factory-calibrated with poly-
styrene latex (PSL) beads with a refractive index of
1.59, i0.0. This is close to the refractive index (1.579,
i0.05) inferred from the chemical composition of
aerosol samples collected at the site (Watson et al.,
2002). Hourly average size distributions were
calculated from 5-min measurements. These are
regarded as ‘‘quasi-dry’’ size distributions, since the
average difference between the ambient temperature
and the temperature measured in the SMPS cabinet
was 17 1C (Watson et al., 2002).

2.2. Size-resolved and PM2.5 aerosol chemistry

Size-resolved chemical measurements were made
under ambient conditions with micro orifice uni-
form deposit impactor (MOUDI) cascade impactors
(MSP Corporation, Shoreview, MN). Samples
were collected during CRPAQS winter IOPs from
0000 to 0500, 0500 to 1000, 1000 to 1600, and 1600
to 2400 PST (GMT-8). From 15 to 18 December,
the three collocated MOUDIs were equipped with
eight stages with nominal d50’s (aerodynamic
diameter at which 50% of particles of that size
are retained by the stage) of 5.6, 2.5, 1.8, 1.0, 0.56,
0.32, 0.18, and 0.10 mm, followed by an after-
filter. After that time, the 1.8 mm stage was removed
and a 0.056 mm stage was added. In two MOUDIs,
particles were collected on clear Teflon substrates
(Cadillac Plastics Co., Southfield, MI) and Teflon-
membrane after-filters (Pall Sciences, R2PJ047, Ann
Arbor, MI) for measurement of particle mass,
elements, and water-soluble ion concentrations.
The third MOUDI used pre-fired (600 1C) alumi-
num foil substrates (MSP Corporation, Shoreview,
MN) and quartz-fiber after-filters (Pall Sciences,
QAT2500-VP, Ann Arbor, MI) for organic carbon
(OC) and elemental carbon (EC) measurement.

PM2.5 samples were collected on Teflon-mem-
brane (Pall Sciences, R2PJ047, Ann Arbor, MI) and
quartz-fiber (Pall Sciences, QAT2500-VP, Ann
Arbor, MI) filters with Desert Research Institute
(DRI; Reno, NV) sequential filter samplers (SFS)
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preceded by PM2.5 size-selective inlets (Sensidyne
Bendix 240 cyclones) and aluminum oxide tubular
HNO3 denuders (Chow et al., 1993b). Nitrate
(NO3

�) volatilized from the quartz-fiber filters was
collected on sodium chloride (NaCl)-impregnated
cellulose-fiber backup filters (Whatman, 31ET,
Hillsboro, OR). Samples were collected during the
same time intervals as those of the MOUDIs except
that two periods, 1000–1300 and 1300–1600 PST,
were sampled during the MOUDI 1000–1600 PST
period. Concentrations from the SFS samples
during these two periods were averaged to coincide
with the MOUDI sampling period.

MOUDI Teflon substrates and SFS Teflon-
membrane filters were analyzed for mass by gravi-
metry and for elements by X-ray fluorescence
(Watson et al., 1999). Water extracts of the second
MOUDI Teflon substrates and SFS quartz-fiber
filters were analyzed for sulfate (SO4

2�), NO3
�, and

chloride (Cl�) by ion chromatography (IC; Chow and
Watson, 1999) and NaCl-impregnated cellulose-fiber
filters were analyzed for NO3

� by IC ammonium
(NH4

+) by automated colorimetry, and water-soluble
sodium (Na+) and potassium (K+) by atomic
absorption spectrometry. OC and EC on MOUDI
aluminum foil substrates and SFS quartz-fiber filters
were analyzed by thermal/optical reflectance (TOR;
Chow et al., 1993c, 2005a, 2007). The optical
correction for pyrolysis of OC on the SFS quartz-fiber
filters was used to determine the OC/EC split for the
corresponding MOUDI aluminum foil substrates.
Total particulate NH4NO3 calculated from the sum
of non-volatilized NO3

� from the front filter and
volatilized NO3

� from the backup filter in the SFS
sampler was used to estimate Bsp (Chow et al., 2005b).

2.3. Light scattering measurements

PM2.5 Bsp was measured at a wavelength (l) of
530 nm using a heated nephelometer preceded by a
PM2.5 size-selective inlet (Radiance Research Model
903, Seattle, WA). The Model 903 uses a ‘‘smart
heater’’ which maintains RH at the nephelometer
outlet below the ambient RH and does not allow it
to exceed 72%. One-hour averages were calculated
from 5-min Bsp measurements. The extent to which
equilibrium between particles and water vapor in
the nephelometer was attained is not known. If
equilibrium was not reached, the particles could be
larger and the indicated Bsp would be higher than
expected. Conversely, heating in the nephelometer
can also lead to evaporation of NH4NO3, a major
component of the Fresno winter aerosol (Bergin
et al., 1997). This would lead to a low-bias in the
measurement of Bsp.

2.4. Estimation of light scattering

Bsp, in units of Mm�1, is the product of the
particle concentration and its scattering cross section:

Bsp ¼

Z
snðDÞdD, (1)

where s is the scattering cross section, D is particle
diameter, and n(D) dD is the number concentration
over the diameter interval dD. s depends on the
incident light wavelength (l), D, and the complex
index of refraction (m). Eq. (1) may be reformulated
as follows:

Bsp ¼

Z
3

2Dr

� �
Q

� �
CðDÞdD, (2)

where r is the particle density, Q is the optical
scattering efficiency, equal to 4s/pD2, and C(D) dD

is the mass concentration over the size interval dD.
The expression [(3/2Dr)Q] is the mass scattering
efficiency. For spherical particles, s and Q can be
estimated using Mie theory (Mie, 1908). For
particles of mixed chemical composition (e.g.,
inorganic ions, water), m and r are estimated as
the volume-weighted m and r of the respective
components. For SMPS and OPC size distribution
data, it was assumed that chemical components
were homogeneously mixed in particles. Mie calcu-
lations were performed per Barber and Hill (1990).

Bsp was estimated from MOUDI and PM2.5 SFS
concentrations with the elastic light scattering
interactive efficiencies (ELSIE; Sloane, 1986; Low-
enthal et al., 1995) program. MOUDI stage
concentrations were converted to continuous size
distributions using the ‘‘Twomey Inversion’’
(Winklmayr et al.’s (1990) adaptation of Twomey’s
(1975) nonlinear iterative algorithm). This proce-
dure accounts for the non-ideal collection efficien-
cies of the MOUDI stages. ELSIE integrates
discrete size distributions derived from the MOUDI
concentrations, applies them over a user-specified
number of size bins up to 2.5 mm, and calculates
the fraction of each species mass in each bin.
Species concentrations in each size bin were
calculated by applying the fractional abundances
to the PM2.5 SFS concentrations. Sulfates, nitrates,
and OC and EC were assumed to be internally
and homogeneously mixed. Unlike carbon and ions,
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Table 1

Densities and refractive indices of individual chemical compo-

nents

Component Density

(g cm�3)

Refractive

index
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soil dust was assumed to be externally mixed
because it was concentrated in the super-micron size
range. SO4

2� was speciated as ammonium sulfate
[(NH4)2SO4], ammonium bisulfate (NH4HSO4), or
sulfuric acid (H2SO4) based on the molar ratios of
SO4

2�, NO3
�, and NH4

+ ions. Water associated with
sulfates and nitrates was estimated using the ZSR
(Zdanovski–Stokes–Robinson) method (Stokes and
Robinson, 1966) from published water activity data
(Staples, 1981; Chan et al., 1992; Tang and
Munkelwitz, 1994). MOUDI aerodynamic diameters
were converted to geometric (Stokes) diameters
based on the chemical composition, including the
estimated water content, and the corresponding
volume-averaged densities, in each size bin. The
particle number concentration was estimated from
the particle volume and the geometric mean
diameter for each size bin.

A chemical extinction budget (Watson, 2002) has
been used to estimate light extinction from PM2.5

chemical concentrations measured in the Intera-
gency Monitoring of PROtected Visual Environ-
ments (IMPROVE) network (Malm et al., 1994,
2000). Assuming that chemical components are
externally mixed, the PM2.5 light scattering portion
of this extinction budget is:

Bsp ¼ 3f ðRHÞ½AMSULþAMNIT� þ 4½1:4OC�

þ 1½Soil�. ð3Þ

The concentrations (mgm�3) of (NH4)2SO4 (AM-
SUL) and NH4NO3 (AMNIT) are multiplied by a
dry mass scattering efficiency of 3m2 g�1 and a
hygroscopic growth factor (f(RH)). The f(RH)
represents the enhancement of Bsp caused by
hygroscopic growth and is based on water activity
data for (NH4)2SO4 (Tang and Munkelwitz, 1994). A
dry mass scattering efficiency of 4m2 g�1 is assigned
to OC because of its lower density, assuming an
f(RH) of unity. A factor of 1.4 is used to convert OC
to organic compound mass (OCM; Grosjean and
Friedlander, 1975; White and Roberts, 1977). This
value is thought to be appropriate for urban aerosols.
The PM2.5 soil scattering efficiency [Eq. (3)] is
assigned as 1m2g�1 (Watson, 2002).
Ammonium sulfate

[(NH4)2SO4]

1.76 1.53, i0.0

Ammonium nitrate (NH4NO3) 1.73 1.55, i0.0

Organic Compound Mass

(OCM)

1.2 1.55, i0.0

Elemental carbon (EC) 1.7 1.9, i0.6

Soil 2.3 1.56, i0.005

Water 1.0 1.33, i0.0
3. Results and discussion

3.1. Average size distributions

Average size distributions (dN/d logD) were
calculated for winter IOPs when valid and complete
(i.e., SMPS, OPC, MOUDI, nephelometer, and SFS
sampler measurements) data were available. These
included nine 5-h, four 6-h, and four 8-h MOUDI
sampling periods. Because the MOUDI operated at
ambient RH, it was necessary to adjust the MOUDI
size distributions to ‘‘dry’’ conditions under which
SMPS and OPC size measurements were made.
MOUDI particle volume was estimated from
chemical mass concentrations and associated water
as a function of aerodynamic diameter at ambient
RH. This was done in a manner similar to that of
Hand et al. (2002). Water mass was estimated using
water activity data for (NH4)2SO4 and NH4NO3

from Tang and Munkelwitz (1994) and Chan et al.
(1992). The MOUDI number distribution was
calculated from the wet particle volume and the
geometric diameter was estimated from the corre-
sponding aerodynamic diameters and volume-aver-
age (wet) density. Densities of the individual
chemical components are shown in Table 1. Geo-
metric diameters were adjusted to dry conditions
(i.e., RH ¼ 30%) from the dry particle volume and
the number concentrations estimated for ambient
conditions.

Average particle number distributions are shown
in Fig. 1. The OPC and MOUDI distributions were
similar above the first OPC channel. The MOUDI
number concentrations may have diverged from the
OPC below the first MOUDI stage because the
inversion extrapolates the distribution in this
region. SMPS concentrations were significantly
lower than those of the OPC and MOUDI above
�100 nm. Similar discrepancies reported by Watson
et al. (2002) were attributed to evaporation of
NH4NO3 from particles in or upstream of the
SMPS, which was located furthest from the
sampling inlet in the shelter.
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Fig. 1. Average particle number distributions (dN/d logD)

derived from scanning mobility particle sizer (SMPS), optical

particle counter (OPC), and micro orifice uniform deposit

impactor (MOUDI) measurements in Fresno from 26 to 28

December 2000, 4 to 7 January 2001, and 31 January to 3

February 2001. MOUDI geometric (Stokes) diameters were

adjusted to relative humidity (RH) ¼ 30%.
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Fig. 2. Comparison between estimated and hourly average

measured PM2.5 Bsp. Bsp estimated from measured scanning

mobility particle sizer (SMPS) and optical particle counter (OPC)

size distributions with an assumed refractive index of 1.6, i0.05

and no hygroscopic growth (Case 1 approach).
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3.2. Estimation of Bsp

3.2.1. Using the particle size distributions

Based on the results in Fig. 1, which shows lower-
than-expected SMPS concentrations above 100 nm,
SMPS concentrations from 9 to 100 nm and OPC
concentrations from 100 to 2500 nm were used.
PM2.5 Bsp was estimated from 273 hourly average
SMPS and OPC size distributions using two
approaches. In Case 1, the refractive index of all
particles was assumed to be 1.6, i0.05, a value
similar to that (1.579, i0.05) inferred from average
PM2.5 chemical composition during winter (Watson
et al., 2002). No attempt was made to account for
hygroscopic growth that may have occurred in the
heated nephelometer. Fig. 2 compares estimated
and measured Bsp assuming a uniform refractive
index and no hygroscopic growth. The average error
(AE) is used as a metric for comparing estimated
and measured Bsp:

AEð%Þ ¼ 100%
XN

i¼1

Estimated Bsp�Measured Bsp

Measured Bsp
:

(4)

While Bsp was underestimated by 46%, on
average, in Case 1, estimated and measured Bsp
were highly correlated (R2

¼ 0.94).
In Case 2, each hourly average size distribution

was characterized by the chemical composition of
the corresponding PM2.5 SFS sample. SO4
2� and

NO3
� were assumed to be present as (NH4)2SO4 and

NH4NO3, respectively, based on the concentrations
of SO4

2�, NO3
�, and NH4

+ ions. The average molar
ratio of PM2.5 SFS NH4

+ to the sum of SO4
2� and

NO3
� was 1.0670.05. OCM was estimated assuming

an OCM/OC ratio of 1.4 (Grosjean and Fried-
lander, 1975; White and Roberts, 1977; Watson,
2002). PM2.5 soil mass was estimated as a modified
sum of metal oxides (Malm et al., 2000):

Soil ¼ 2:2Alþ 2:49Siþ 1:63Caþ 2:42Feþ 1:94Ti.

(5)

Water was added to particles using water activity
data for (NH4)2SO4 and NH4NO3 from Tang and
Munkelwitz (1994) and Chan et al. (1992), respec-
tively, at the hourly average RH measured in the
nephelometer (Lowenthal et al., 2000). Therefore,
all particle diameters were increased by the same
growth factor. OCM was assumed to be non-
hygroscopic (Malm et al., 2000). The volume-
weighted average refractive index was calculated
from the densities and refractive indices of the
individual chemical components and water, as
shown in Table 1.

Fig. 3 shows that estimated and measured Bsp
were again highly correlated (R2

¼ 0.95) but Bsp
was underestimated by 41%, on average. The
estimated average Bsp was 10% higher in Case 2
(203Mm�1) than in Case 1 (185Mm�1). The
average RH measured in the heated nephelometer
was 56%. The corresponding estimated average
increase in particle diameter due to hygroscopic
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growth was 7%. For a given refractive index, larger
particles in the sub-micron size range should lead to
more Bsp. However, since water has a lower
refractive index (1.33, i0.0) than the other chemical
components, the volume-weighted average refrac-
tive index of hydrated particles in Case 2 (1.54,
i0.04) was lower than that used in Case 1 (1.6, i0.05).
For a given particle size, a lower refractive index
should produce less light scattering. The combined
effect of increased particle size and lower refractive
index in Case 2 resulted in a relatively small increase
in estimated light scattering compared with Case 1.

3.2.2. Using MOUDI size-resolved chemistry

PM2.5 Bsp estimated from MOUDI and PM2.5

SFS chemical concentrations is compared with
measured Bsp in Fig. 4. Stokes diameters estimated
for the MOUDI at ambient RH were adjusted to the
lower RH measured in the nephelometer, as
described above. In this case, Bsp was under-
estimated by 25%, on average. The correlation
between estimated and measured Bsp was high
(R2
¼ 0.89), even though there were far fewer

observations (N ¼ 19) than in Case 1 or Case 2
(N ¼ 273). The slope of the regression of estimated
on measured Bsp (0.74) was higher than those in
Case 1 (0.52) and Case 2 (0.56). While the MOUDI
and OPC distributions were similar, as shown in
Fig. 1, the MOUDI particle number concentration
for dry diameters 4100 nm was 9780 cm�3. This
value is higher than that derived for Case 2
(6217 cm�3), which explains why more scattering
was estimated from the MOUDI concentrations.
3.2.3. Using the IMPROVE equation

PM2.5 Bsp was estimated from PM2.5 SFS
chemical concentrations using the IMPROVE
equation [Eqs. (3) and (5)]. There were 48 SFS
samples with corresponding Bsp measurements
during the CRPAQS IOPs. The f(RH) in Eq. (3)
were calculated for each hourly average RH
measured in the nephelometer and these were
averaged for the corresponding SFS sampling
periods. As shown in Fig. 5, Bsp was under-
estimated by 35% assuming an OCM/OC ratio of
1.4. The slope of the regression of estimated on
measured Bsp was 0.61 with a correlation (R2) of
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Table 2

Average error (AE; %) in reconstructed PM2.5 mass as a function

of measured PM2.5 mass for OCM/OCa
¼ 1.4 and 1.8

PM2.5 mass (mgm�3) AE (%)

(OCM/OC ¼ 1.4)

AE (%)

(OCM/OC ¼ 1.8)

o20 67 90

20–40 3.2 16.5

40–80 �3.4 8.5

60–80 �8.6 4.5

80–100 �13.1 �1.2

4100 �34 0.40

aOC, organic carbon; OCM, organic compound mass.
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0.91. Malm et al. (2005) conducted a study at
Yosemite National Park during summer 2002, when
the aerosol was influenced by fresh and aged natural
fire smoke. Based on mass closure analysis, they
concluded that an OCM/OC ratio of 1.8 was more
realistic than the typical urban value of 1.4 under
these conditions. Applying the IMPROVE equa-
tions with an OCM/OC ratio of 1.8 to Fresno
concentrations, Bsp was underestimated by 26%
and the slope increased to 0.71 (Fig. 5).

PM2.5 mass closure was investigated, with recon-
structed mass equal to the sum of PM2.5 SO4

2� as
(NH4)2SO4, NO3

� as NH4NO3 (based on the front
quartz-fiber filter non-volatilized NO3

� concentration),
OCM, EC, and soil [calculated from Eq. (5)].
Reconstructed and measured PM2.5 concentrations
are compared in Fig. 6. With OCM/OC ratios of 1.4
and 1.8, PM2.5 mass was over-estimated by 4.5% and
18.9%, on average, respectively. In both cases, R2

between reconstructed and measured mass wasX0.98.
The slopes and intercepts were 0.80 and 8.1mgm�3 for
OCM/OC of 1.4 and 0.93 and 8.2mgm�3 for OCM/
OC of 1.8, respectively. However, these results are not
definitive with respect to determining the OCM/OC
ratio in Fresno. Table 2 shows that AE [Eq. (4)] varies
considerably with PM2.5 concentration, whether the
OCM/OC ratio is 1.4 or 1.8.
3.3. Systematic underestimation of Bsp

Comparisons between estimated and measured
PM2.5 Bsp using the four different approaches are
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hydrogen.
summarized in Table 3. Bsp was consistently
underestimated by all of the approaches examined.
In rank order, the AEs were �25% for the MOUDI
approach, �26% and �35% for the IMPROVE
approach (assuming an OCM/OC ratio of 1.8 and
1.4, respectively), �41% for Case 2, and �46% for
Case 1. Watson et al. (2002) estimated Bsp in
Fresno using SMPS data for diameters up to
400 nm. Bsp was underestimated for the winter of
2000–2001 but not for the following summer.
Underestimation during winter was attributed to
evaporation of NH4NO3 in or preceding the SMPS
in the heated shelter. During summer, most NO3

�

was present as gaseous HNO3 and there was little
difference between the shelter and ambient tem-
peratures (Watson et al., 2002; Chow et al., 2005b).

In Case 2, OPC data were used for particles
4100 nm; this size range accounted for 499% of
the estimated light scattering. While Bsp was
underestimated to a lesser extent in Case 2 than
by Watson et al. (2002), OPC size distributions
during winter may also have been affected by
evaporation of NH4NO3 in the heated shelter.
However, evaporation of NH4NO3 did not account
for underestimation of Bsp in the MOUDI or
IMPROVE approaches, which were based on PM2.5

SFS total particulate NO3
�.

A possible cause of underestimation of Bsp is
examined in Fig. 7, which compares RH in the
nephelometer with AE for: (a) the Case 2 approach
(Fig. 3), (b) the MOUDI approach (Fig. 4), and
(c) the IMPROVE approach (Fig. 5). It is apparent
that underestimation of Bsp increased with increas-
ing RH in Case 2 (Fig. 7a). A similar relationship
is suggested for the MOUDI approach (Fig. 7b),
although the correlation was not significant.
There was no relationship for the IMPROVE
approach (Fig. 7c). The Case 2 and MOUDI results
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Table 3

Comparisons between estimated and measured PM2.5 Bsp using four different approaches

Case 1a Case 2b MOUDIc IMPROVE

(OCM/OC ¼ 1.4) d

IMPROVE

(OCM/OC ¼ 1.8)e

Average estimated Bsp (Mm�1) 185.0 203.3 239.2 222.8 255.8

Average measured Bsp (Mm�1) 345.2 345.2 322.3 358.7 358.7

Average error (%) �46 �41 �25 �35 �26

Number of cases 273 273 19 48 48

aBsp estimated from particle size distribution measured with the SMPS and OPC. The refractive index of all particles was assumed to be

1.6, i0.05 and no attempt was made to account for hygroscopic growth.
bBsp estimated from particle size distribution measured with the SMPS and OPC. The refractive index and hygroscopic growth factors

were based on the corresponding PM2.5 SFS filter chemical composition. Organics assumed to be non-hygroscopic.
cBsp estimated from MOUDI size distributions applied to PM2.5 SFS filter chemical composition. Refractive index and hygroscopic

growth estimated as a function of size and chemical composition. Organics assumed to be non-hygroscopic.
dBsp estimated from the PM2.5 SFS filter chemical composition using the IMPROVE equations [Eqs. (3) and (5)] with OCM/OC ¼ 1.4.

Organics assumed to be non-hygroscopic.
eBsp estimated from the PM2.5 SFS filter chemical composition using the IMPROVE equations [Eqs. (3) and (5)] with OCM/OC ¼ 1.8.

Organics assumed to be non-hygroscopic.
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(Fig. 7a and b) suggest that hygroscopic growth as a
function of RH was underestimated. This may not
be evident in the IMPROVE approach, which
assumes constant values for dry scattering efficien-
cies. Lowenthal and Kumar (2004) demonstrated
that this assumption may not be valid at remote
IMPROVE sites, where scattering efficiencies vary
with mass concentration and particle size.

All of the approaches assume that OCM is not
hygroscopic. However, there is evidence that organ-
ics may account for an important fraction of aerosol
hygroscopic growth (Saxena and Hildemann, 1997;
Gysel et al., 2004; Speer et al., 2003; Dinar et al.,
2006, 2007). Assuming that OCM and NH4NO3

absorb the same amount of water per unit
concentration and that the OCM/OC ratio is 1.4,
AE in the MOUDI approach would be reduced
from �25% to �19%. If a similar assumption is
made for the IMPROVE approach and the f(RH)
term is applied to OCM (1.4�OC), AE is reduced
from �35% to �10%. Additional hygroscopic
growth by organics will increase estimated Bsp.

4. Conclusions

Particle light scattering (Bsp) was estimated from
particle size and chemical measurements during the
CRPAQS winter IOPs from 15 December 2000 to 3
February 2001 at the Fresno Supersite and com-
pared with Bsp measured with a Radiance model
903 nephelometer. The nephelometer heated the air
stream, which lowered the RH in the instrument
with respect to ambient RH to o72%. Bsp
estimated from particle size distributions measured
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with a SMPS and an OPC was underestimated by
46% when a constant refractive index (1.6, i0.05)
and no hygroscopic growth was assumed (Case 1)
and by 41% when refractive index and hygroscopic
growth were estimated from PM2.5 SFS chemical
concentrations (Case 2). Bsp was underestimated by
35% using the IMPROVE light extinction equation
and by 25% using chemical size distributions
measured with MOUDI cascade impactors and
PM2.5 SFS concentrations.

The underestimation of Bsp in Fresno appears
to be related to differences in the conditions
under which the various measurements were
made. The continuous particle sizing instruments
were operated in a temperature-controlled labora-
tory which led to evaporation of NH4NO3 and
reduction in particle size and possibly number
concentration. The MOUDI was operated outdoors
at ambient temperature and RH. The nephelometer
was also operated outdoors at lower-than-ambient
RH. To reconcile differences in measurement
conditions in the estimation of Bsp, it was necessary
to ‘‘adjust’’ the SMPS, OPC, and MOUDI size
distributions to the nephelometer RH. This required
assumptions about the relationship between aerosol
chemical composition and hygroscopic growth that
may not have been accurate, in part because of the
potential role of organics in hygroscopic growth.
These results demonstrate that measurement con-
sistency is an important consideration for experi-
mental studies of aerosol light extinction. In
addition, a better understanding of organic compo-
sition and hygroscopicity is needed for locales like
Fresno where OC is a major component of the
aerosol.
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